Pflug von Walle

Geburtstagsparadoxon

Die durchschnittliche Lesezeit für diesen Artikel beträgt 356 Sekunden.

Die Mathematik hält viele interessante und kuriose Problemstellungen mit den dazugehörigen Lösungsansätzen bereit. Eines davon, auch als Geburtstagsproblem bezeichnet, ist das Geburtstagsparadoxon. Häufig wird es als Beispiel dafür genannt, dass bestimmte Wahrscheinlichkeiten und Zufälle intuitiv falsch geschätzt werden.

Das Geburtstagsparadoxon

Die Problemstellung01 oder auch Fragestellung beim Geburtstagsparadoxon lautet wie folgt:

Du und dein Freund gehen auf eine Feier. Mit euch zusammen sind 23 Personen anwesend. Dein Freund schlägt dir eine Wette vor. „Wenn du zwei Leute findest, die am gleichen Tag Geburtstag haben, gebe ich dir 200 €. Wenn nicht, gibst du mir 50 €. Solltest du die Wette annehmen?

Die Lösung ist einfach: Ja. Denn die Gewinnchance liegt über 50%.

„Befinden sich in einem Raum mindestens 23 Personen, dann ist die Chance, dass zwei oder mehr dieser Personen am gleichen Tag (ohne Beachtung des Jahrganges) Geburtstag haben, größer als 50 %.“02

Auf den ersten Blick erscheint es ausgesprochen paradox. Immerhin gibt es 365 mögliche Geburtstage, mit dem 29. Februar sogar 366.

Die meisten Menschen hätten die Wette deswegen ablehnt, weil sie schätzen, dass die Wahrscheinlichkeit nur bei 5% liegt. Der Unterschied zwischen durchschnittlichem Schätzwert und Wahrscheinlichkeit liegt bei solchen Fragestellungen bei einer Zehnerpotenz.

Diesen Umstand hat der Mathematiker Richard von Mises zum erstmal beschrieben und dem Problem auch den Namen Geburtstagsparadoxon gegeben.

Werbeanzeige:

Die Wahrscheinlichkeitsrechnung

Ich versuche jetzt mal einen Schwenk in Richtung Stochastik. Wer mit Mathematik wenig am Hut hat, der kann dieses Kapitel einfach nur schnell durchscrollen bzw. klappt es einfach gar nicht erst aus 🙂

Achtung Mathematik

Wahrscheinlichkeit, dass eine beliebige Anzahl an Personen an einem beliebigen Tag gemeisam Geburtstag haben

Achtung Mathematik

Wahrscheinlichkeit, dass mindestens zwei Personen am selben Tag Geburtstag haben

Achtung Mathematik

Praktische Abweichungen

Die von mir verwendeten Zahlen sind stark vereinfacht um es auch für Nicht- Mathematiker nachvollziehbar zu machen. So habe ich Schaltjahre und Geburtstage am 29. Februar nicht berücksichtigt.

In der wahren Welt sind im Gegensatz zur Stochastik nicht alle Geburtstermine gleich wahrscheinlich. So ist es offensichtlich, dass im Sommer mehr Kinder geboren als im Winter03 . Die Wahrscheinlichkeit nimmt dadurch leicht zu.

Nimmt man jedoch reale Zahlen als Basis für eine Simulationen zeigt sich, dass auch für diese Daten die Wahrscheinlichkeit, dass zwei Personen am gleichen Tag Geburtstag haben, nach wie vor bei 23 Personen 50 % übersteigt04. Auch die Berücksichtigung des vernachlässigten Schalttages ändert an diesen Werten nichts.

Werbeanzeige:

Warum verschätzen wir uns?

Unser Gefühl verwechselt das Problem offenbar mit folgender Frage: „Wie groß muss die Gruppe sein, dass mit einer Wahrscheinlichkeit von 50 Prozent eine der Personen an einem bestimmten Tag Geburtstag hat, zum Beispiel an meinem Geburtstag?“

Darauf ist die richtige Antwort in der Tat viel größer, nämlich 253 Personen. Die Herleitung dafür möchte ich euch an dieser Stelle ersparen. Das richtige Verständnis für den Inhalt aller Fragestellung ist auch hier ein wichtiger Indikator dafür, wie wir einen Sachverhalt einschätzen. Fügt man, wie ich am Anfang, noch eine Wette hinzu, sinkt die angenommene und geschätzte Wahrscheinlichkeit weiter ab. Dann kommt noch die Unsicherheit hinzu eine Wette verlieren zu können.

Off-Topic

Die Formeln wurden mit LaTeX geschrieben und durch das Plugin QuickLaTeX im Beitrag gerendert.

Nach einer Textanalyse ist dieser Text zu 43% subjektiv, die wichtigsten Worte sind: Fragestellung, Geburtstagsparadoxon, Geburtstag, Mathematik, Wahrscheinlichkeit, Wette, Beispiel

Ein Computer würde diesen Text der Kategorie Kultur zu ordnen, ich bin ja eher für Wissenschaft.

  1. mathematische Bezeichnung []
  2. Richard von Mises: Über Aufteilungs- und Besetzungswahrscheinlichkeiten. Revue de la Faculté de Sciences de l’Université d’Istanbul N.S., 4. 1938–39, S. 145–163. []
  3. Emma Hawe, Alison Macfarlane and John Bithell: Daily and seasonal variation in live births, stillbirths and infant mortality in England and Wales, 1979–96 []
  4. Hugo Pfoertner in de.sci.mathematik, 22. Januar 2005. []

Kommentar hinterlassen

Deine E-Mail-Adresse wird nicht veröffentlicht. Erforderliche Felder sind mit * markiert.